
Getting Started with
Sovrin
A Developer Guide from the
Sovrin Foundation

image alt text

Getting Started with Sovrin

What Sovrin Is, and Why it Matters

What Weʼll Cover

Alice Gets a Transcript

Install Sovrin

Evaluate the Invitation

Accept the Invitation

Test Secure Interaction

Apply for a Job

Apply for a Loan

Appendix

file:///Users/rickg/Downloads/sovrin-client-stable/#getting-started-with-sovrin
file:///Users/rickg/Downloads/sovrin-client-stable/#what-sovrin-is-and-why-it-matters
file:///Users/rickg/Downloads/sovrin-client-stable/#what-well-cover
file:///Users/rickg/Downloads/sovrin-client-stable/#alice-gets-a-transcript
file:///Users/rickg/Downloads/sovrin-client-stable/#install-sovrin
file:///Users/rickg/Downloads/sovrin-client-stable/#evaluate-the-invitation
file:///Users/rickg/Downloads/sovrin-client-stable/#accept-the-invitation
file:///Users/rickg/Downloads/sovrin-client-stable/#test-secure-interaction
file:///Users/rickg/Downloads/sovrin-client-stable/#apply-for-a-job
file:///Users/rickg/Downloads/sovrin-client-stable/#apply-for-a-loan
file:///Users/rickg/Downloads/sovrin-client-stable/#appendix

Faber College Configures Transcripts

Acme Corp Defines a Job-Application

What Sovrin is, and Why it
Matters
Sovrin is a software ecosystem for private, secure, and powerful

identity. It puts people — not the organizations that traditionally

centralize identity — in charge of decisions about their own privacy and

disclosure. This enables all kinds of rich innovation: link contracts,

revocation, novel payment workflows, asset and document

management features, creative forms of escrow, curated reputation,

integrations with other cool technologies, and so on.

Sovrin uses open-source, distributed ledger technology. These ledgers

are a form of database that is provided cooperatively by a pool of

participants, instead of by a giant database with a central admin. Data

lives redundantly in many places, and it accrues in transactions

orchestrated by many machines. Strong, industry-standard

cryptography protects it. Best practices in key management and

cybersecurity pervade its design. The result is a reliable, public source

of truth under no single entityʼs control, robust to system failure,

resilient to hacking, and highly immune to subversion by hostile

entities.

If the cryptography and blockchain details feel mysterious, fear not:

file:///Users/rickg/Downloads/sovrin-client-stable/#faber-college-configures-transcripts
file:///Users/rickg/Downloads/sovrin-client-stable/#acme-corp-defines-a-job-application

getting traction to develop on Sovrin is easy and fast. Youʼre starting in

the right place.

What Weʼll Cover
Our goal is to introduce you to many of the concepts of Sovrin, and

give you some idea of what happens behind the scenes to make it all

work.

We are going to frame the exploration with a story. Alice, a graduate of

the fictional Faber College, wants to apply for a job at Acme Corp. As

soon as she has the job, she wants to apply for a loan so she can buy a

car. She would like to use her college transcript as proof of her

education on the job application; once hired, Alice would like to use the

fact of employment as evidence of her creditworthiness for the loan.

The sorts of identity and trust interactions required to pull this off are

messy in the world today; they are slow, they violate privacy, and they

are susceptible to fraud. Weʼll show you how Sovrin is a quantum leap

forward.

Ready?

Alice Gets a Transcript
As a graduate of Faber College, Alice receives an alumni newsletter

where she learns that her alma mater is offering digital transcripts. She

logs in to the college alumni website and requests her transcript by

clicking a Get Transcript button. (Other ways to initiate this request

might include scanning a QR code, downloading a transcript package

from a published URL, etc.)

Faber College has done some prep work to offer this service to Alice. It

has the role of trust anchor on Sovrin. A trust anchor is a person or

organization that Sovrin already knows about, that is able to help

bootstrap others. (It is not the same as what cybersecurity experts call

a “trusted third party”; think of it more like a facilitator). Becoming a

trust anchor is beyond the scope of this guide; for now, weʼll just

assume that Faber College has jumped through some hoops and has

the status.

Alice doesnʼt realize it, yet, but in order to use this digital transcript she

will need a new type of identity - - not the traditional identity that Faber

College has built for her in its on-campus database, but a new and

portable one that belongs to her, independent of all past and future

relationships, that nobody can revoke or co-opt or correlate without

her permission. This is a self-sovereign identity, and it is the core

feature for which Sovrin was named.

In normal contexts, managing a self - sovereign identity will require a

tool such as a desktop or mobile application. It might be a standalone

app, or it might leverage a third party service provider that Sovrin calls

an agency. The Sovrin Foundation publishes reference versions of

such tools. Faber College will have studied these requirements and will

recommend a Sovrin app to Alice if she doesnʼt already have one; this

app will install as part of the workflow from the Get Transcript button.

When Alice clicks Get Transcript, she will download a file that holds a

Sovrin link invitation. This file, having a.sovrin extension and

associated with her Sovrin app, will allow her to establish a secure

channel of communication with another party in the Sovrin ecosystem–

Faber College.

So when Alice clicks Get Transcript, she will normally end up installing

an app (if needed), launching it, and then being asked by the app

whether she wants to accept an invitation to connect with Faber.

For this guide, however, weʼll be using a command - line interface

instead of an app, so we can see what happens behind the scenes. We

will pretend to be a particularly curious and technically adventurous

Alice…

Install Sovrin
Coming soon: We are in the process of creating new vm images for

Ubuntu and Windows for validator nodes and also client side docker

image to make it easy for you to play with Sovrin.

Manually setup validator nodes (optional): If you prefer to install

Sovrin-Node manually without using virtual machine images, please

see the installation instructions for Linux or Windows.

$ pip install -U --no-cache-dir sovrin-client

If you get any error, check out the info about prerequisites; there are a

few dominoes you might have to line up.

The install puts some python modules on your system. Most

importantly, it gives you a command - line interface(CLI) to Sovrin. We

are going to use that CLI to explore what Sovrin can do. (Sovrin also

has a programmatic API, but it is not yet fully formalized, and this

version of the guide doesnʼt document it. See the Sovrin roadmap.)

Run the Sovrin CLI

Type this command:

$ sovrin

You should see an interactive prompt, like this:

Sovrin - CLI version 1.17(c) 2016 Evernym, Inc.

Type 'help' for more information.

sovrin>

https://docs.google.com/document/d/1PX-9VQCC8ULgpU2bofaNLJnMW45JXTFPNPnnBSikcRU/edit#
https://docs.google.com/document/d/1_ba3M4cqLAvha_BLgPp07L2EHLdxqptr_tRW2IUAS0g/edit#heading=h.oe37ssfqfijq
https://docs.google.com/document/d/1CyggP4nNPyx4SELNZEc2FOeln6G0F22B37cAVtB_FBM/edit
https://github.com/sovrin-foundation/sovrin/wiki/Roadmap

Weʼre going to be playing the role of multiple identity owners (a

person like Alice, an organization like Faber College, or an IoT - style

thing; these are often called “principals” in security circles) before the

guide is done.To do this weʼll use multiple shells. To make it easy to

keep track of which identity owner weʼre representing in a given

window, letʼs change the prompt:

sovrin> prompt ALICE

ALICE>

The status command gives general information about the state of the

CLI. Alice tries it:

ALICE> status

Not connected to Sovrin network. Please connect first.

Usage:

 connect(test | live)

Alice might also try the help command to explore whatʼs available.

Evaluate the Invitation
To make this guide more convenient, the sovrin CLI package installs a

sample Faber College invitation to CLI ROOT/scripts/sample/faber-

invitation.sovrin. Weʼre going to use this file as if we had downloaded it

from Faber. (Remember, in normal usage, Aliceʼs Sovrin app would be

doing a lot of these steps automatically.)

ALICE> show sample/faber-invitation.sovrin

{

 "link-invitation": {

 "name": "Faber College",

 "identifier": "FuN98eH2eZybECWkofW6A9BKJxxnTatBCopfUiNxo6ZB",

 "nonce": "b1134a647eb818069c089e7694f63e6d"

 },

 "sig":

"4QKqkwv9gXmc3Sw7YFkGm2vdF6ViZz9FKZcNJGh6pjnjgBXRqZ17Sk8bUDSb6hsXHoPxrzq2F51eDn1DKAaCzhqP"

}

Try Next:

 load sample/faber-invitation.sovrin

Alice sees a bunch of data that looks interesting but mysterious. She

wants Sovrin to tell her if the link invitation file is well formed and has

something useful in it, so she uses the load command:

ALICE> load sample/faber-invitation.sovrin

New keyring Default created

Active keyring set to "Default"

1 link invitation found for Faber College.

Creating Link for Faber College.

Try Next:

 show link "Faber College"

 accept invitation from "Faber College"

This causes Sovrin to parse and validate the file. Alice would now like

to know whatʼs entailed in accepting the invitation. She types:

ALICE> show link Faber

Unlike the show command for files, this one asks Sovrin to show a link.

More details are exposed:

Expanding Faber to "Faber College"

Link (not yet accepted)

 Name: Faber College

 Identifier: not yet assigned

 Trust anchor: Faber College (not yet written to Sovrin)

 Verification key: <empty>

 Signing key: <hidden>

 Target: FuN98eH2eZybECWkofW6A9BKJxxnTatBCopfUiNxo6ZB

 Target Verification key: <unknown, waiting for sync>

 Target endpoint: <unknown, waiting for sync>

 Invitation nonce: b1134a647eb818069c089e7694f63e6d

 Invitation status: not verified, target verkey unknown

 Last synced: <this link has not yet been synchronized>

Try Next:

 sync "Faber College"

 accept invitation from "Faber College"

Youʼll see the link contains several pieces of information. Letʼs examine

them one at a time.

Name: Faber College

This is a friendly name for the link that Alice has been invited to accept.

The name is stored locally and not shared. Alice can always rename a

link; its initial value is just provided by Faber for convenience.

Identifier: not yet assigned

Identifier is a unique value that gets generated when user tries to

accept the invitation, and that identifier will be sent to Faber College,

and used by Faber College to reference Alice in secure interactions.

Each link invitation on Sovrin establishes a pairwise relationship when

accepted, and each pairwise relationship uses different identifiers.

Alice wonʼt use this identifier with other relationships. By having

independent pairwise relationships, Alice reduces the ability for others

to correlate her activities across multiple interactions.

Trust anchor: Faber College(not yet written to Sovrin)

This gives Alice a friendly name for the entity that is bootstrapping the

new pairwise relationship onto the Sovrin ecosystem. Trust anchors

provide a way for identifiers to be added to Sovrin. They are generally

organizations but can be persons as well. Faber College is a trust

anchor, and if its invitation is accepted, will write Aliceʼs identifier to

Sovrin.

It is important to understand that this identifier for Alice is not, in and

of itself, the same thing as Aliceʼs self-sovereign identity. Rather,

Aliceʼs identity will– for her–be the sum total of all the pairwise

relationships she has, and all the attributes knowable about those

manifestations of her identity, across the full network. If Alice accepts

this invitation, she will have a self-sovereign identity by virtue of the

fact that she is accessible on the network through at least one

relationship, and Faber College will be creating the first relationship

participating in Aliceʼs identity–but Aliceʼs identity will not be captive to

Faber College in any way.

Verification key: <empty>

Aliceʼs verification key allows Sovrin and Faber College to trust, in

cryptographic operations, that interactions with Alice are authentically

bound to her as sender or receiver. It is an asymmetric public key, in

cryptographic terms, and the Sovrin CLI generated this value randomly

when it loaded the invitation.

Verification key is a 32 byte Ed25519 verification key. Ed25519 is a

particular elliptic curve, and is the default signature scheme for Sovrin.

The Verification key has a subtle relationship with the Identifier value a

couple lines above it in the CLI output. Identifiers in Sovrin are called

DIDs (distributed identifiers). These are opaque, unique sequences

of bits, like UUIDs or GUIDs.

There are three options possible for verification key associated with a

DID: - Empty. There are no verkey associated with a DID, and DID is

NCID (non-cryptographic identifier). In this case, the creator of the

Sovrin identity record (called a trust anchor) controls the identifier, and

no independent proof-of-existence is possible until either Abbreviated

or Full verkey is created. - Abbreviated. In this case, there is a verkey

https://en.wikipedia.org/wiki/Public-key_cryptography

starting with a tilde ‘~ʼ followed by 22 or 23 characters. The tilde

indicates that the DID itself represents the first 16 bytes of the verkey,

and the string following the tilde represents the second 16 bytes of the

verkey, both using base58Check encoding. - Full. In this case, there is

a full 44 character verkey, representing a base58Check encoding of all

32 bytes of a Ed25519 verification key

In the current guide Abbreviated key will be created and used by Alice

(you will notice ~ prefix for verification key in the guide).

The key that Alice uses to interact with Faber can change if she

revokes or rotates it, so accepting this invitation and activating this link

doesnʼt lock Alice in to permanent use of this key. Key management

events are discoverable in the Sovrin ledger by parties such as Faber

College; weʼll touch on that later in the guide.

Signing key: < hidden >

A different signing key is used by Alice to interact with each party on

Sovrin (Faber College in this case). A signing key is an asymmetric

private key, in cryptographic terms, and the Sovrin CLI also generated

this value when it loaded the invitation. Alice will sign her messages to

Faber College with this key, but she will never transmit the signing key

anywhere. Because she signs with this key, Faber College can use the

associated verification key and know itʼs really dealing with Alice. Itʼs

important that this signing key is kept secret, as someone with this key

can impersonate Alice. If this key is ever compromised, Alice can

replace it with a new one using several methods not covered here.

Target: FuN98eH2eZybECWkofW6A9BKJxxnTatBCopfUiNxo6ZB

Target is the unique identifier Alice uses to reference Faber College.

Faber College provided this value in the invitation. Alice can use it to

look up Faber Collegeʼs verification key in the Sovrin Ledger to ensure

interactions with Faber College are authentic.

Target Verification key: < unknown, waiting for sync >

Communication from the target canʼt be confirmed unless we know its

verification key. We know the target is a CID(thatʼs what the Target line

just above told us)–but since key revocations and rotations might

happen at any time, we cannot assume that a CID has not updated its

verification key. To know the true verification key of an identifier, we

have to query Sovrin. Different use cases require different levels of

assurance as to how recently weʼve queried Sovrin for any key

replacements. In this case we might be comfortable if we know that the

key was synchronized in the last hour. But we can see that weʼve never

synchronized this link, so we donʼt know what the verification key is at

all. Until Alice connects to Sovrin, she wonʼt be able to trust

communication from Faber College.

Target endpoint: < unknown, waiting for sync >

Targets can have endpoints –locations(IRIs / URIs / URLs) on the

network where others can contact them. These endpoints can be

static, or they can be ephemeral pseudonymous endpoints facilitated

by a third party agency. To keep things simple, weʼll just use static

endpoints for now.

Invitation nonce: b1134a647eb818069c089e7694f63e6d

This is just a big random number that Faber College generated to track

the unique invitation. When an invitation is accepted, the invitee

digitally signs the nonce such that the inviter can match the

acceptance with a prior invitation.

Invitation status: not verified, target verification key unknown

Invitations are signed by the target. We have a signature, but we donʼt

yet know Faber Collegeʼs verification key, so the signature canʼt be

proved authentic.We might have an invitation from someone

masquerading as Faber College. Weʼll resolve that uncertainty when we

sync. Last synced: < this link has not yet been synchronized > A

link stores when it was last synchronized with the Sovrin network, so

we can tell how stale some of the information might be. Ultimately,

values will be proved current when a transaction is committed to the

ledger, so staleness isnʼt dangerous–but it makes Sovrin more efficient

when identity owners work with up-to-date data.

Accept the Invitation

Alice attempts to accept the invitation from Faber College.

ALICE> accept invitation from Faber

Expanding Faber to "Faber College"

Invitation not yet verified.

Link not yet synchronized.

Invitation acceptance aborted.

Cannot sync because not connected. Please connect first.

Usage:

 connect <test|live>

In order to accept an invitation, its origin must be proved. Just because

an invitation says the sender is “Faber College” doesnʼt make it so; the

ease of forging email headers is a reminder of why we canʼt just trust

what a sender says. Syncing the link with Sovrin will allow us to prove

the association between Faber Collegeʼs identity and public key, but

the CLI must be connected to the Sovrin network to sync– and we

havenʼt connected yet.

There are two Sovrin networks we might connect to. One is a test

network, and the other is live(production). Weʼll use the test network

for the demo.

ALICE> connect test

Connected to test.

Alice tries again to accept the invitation from Faber College. This time

she succeeds.

ALICE> accept invitation from Faber

Expanding Faber to "Faber College"

Invitation not yet verified.

Link not yet synchronized.

Attempting to sync...

Synchronizing...

 Link Faber College synced

Pinging target endpoint: ('54.70.102.199', 5555)

 Ping sent.

 Pong received.

Signature accepted.

Response from Faber College (835.18 ms):

 Trust established.

 Identifier created in Sovrin.

 Available Claim(s): Transcript

Synchronizing...

 Confirmed identifier written to Sovrin.

Try Next:

 show claim "Transcript"

 request claim "Transcript"

Accepting an invitation takes the nonce that Faber College provided,

and signs it with the Aliceʼs signing key. It then securely transmits the

signed data along with the identifier and verification key to Faber

Collegeʼs endpoint, which is discovered when the link is synchronized.

Faber College matches the provided nonce to the record of the nonce it

sent to Alice, verifies the signature, then records Aliceʼs new pairwise

identifier in the Sovrin ledger.

Once the link is accepted and synchronized, Alice inspects it again.

ALICE> show link Faber

Expanding Faber to "Faber College"

Link

 Name: Faber College

 Identifier: LZ46KqKd1VrNFjXuVFUSY9

 Trust anchor: Faber College (confirmed)

 Verification key: ~CoEeFmQtaCRMrTy5SCfLLx

 Signing key: <hidden>

 Target: FuN98eH2eZybECWkofW6A9BKJxxnTatBCopfUiNxo6ZB

 Target Verification key: <same as target>

 Target endpoint: 54.70.102.199:5555

 Invitation nonce: b1134a647eb818069c089e7694f63e6d

 Invitation status: Accepted

 Available Claim(s): Transcript

 Last synced: 14 seconds ago

Try Next:

 show claim "Transcript"

 request claim "Transcript"

Notice now that the Last synced line is updated.

Alice can see now that the target verification key and target endpoint,

as well as identifier and verification key are updated, which allows her

to communicate with Faber College. She can also see that the identity

of the trust anchor was confirmed (from the Sovrin network), and that

her invitation has been accepted.

Test Secure Interaction
At this point Alice is connected to Faber College, and can interact in a

secure way. The Sovrin CLI supports a ping command to test secure

pairwise interactions. (This command is partly implemented today, and

partly still a stub.)

ALICE> ping Faber

Expanding Faber to "Faber College"

Pinging target endpoint: ('54.70.102.199', 5555)

 Ping sent.

 Pong received.

Alice receives a successful response from Faber College. Hereʼs what

happens behind the scenes:

1. The ping she sends contains a random challenge.

2. The ping also includes Aliceʼs pairwise identifier and a signature.

3. Faber College verifies Aliceʼs signature.

4. Faber College digitally signs that challenge and sends it back.

5. Alice verifies that the response contained the same random

challenge she sent.

6. Alice uses the verification key in the Faber College Link to verify the

Faber College digital signature.

She can trust the response from Faber College

because (1) she connects to the current endpoint, (2) no replay - attack

is possible, due to her random challenge, (3) she knows the verification

key used to verify Faber Collegeʼs digital signature is the correct one

because she just confirmed it on Sovrin.

Inspect the Claim
Notice that when Alice last showed the Faber link, there was a new line:

Available Claim(s): Transcript . A claim is a piece of information

about an identity - -a name, an age, a credit score… It is information

claimed to be true. In this case, the claim is named “Transcript.”

Claims are offered by an issuer. An issuer may be any identity owner

known to Sovrin, and any issuer may issue a claim about any identity

owner it can identify. The usefulness and reliability of a claim are tied to

the reputation of the issuer, with respect to the claim at hand. For Alice

to self-issue a claim that she likes chocolate ice cream may be

perfectly reasonable, but for her to self-issue a claim that she

graduated from Faber College should not impress anyone. The value of

this transcript is that it is provably issued by Faber College. Alice wants

to use that claim. She asks for more information:

ALICE> show claim Transcript

Found claim Transcript in link Faber College

Status: available (not yet issued)

Name: Transcript

Version: 1.2

Attributes:

 student_name

 ssn

 degree

 year

 status

Try Next:

 request claim "Transcript"

Alice sees the attributes the transcript contains. These attributes are

known because a schema for Transcript has been written to the ledger

(see Appendix). However, the “not yet issued” note means that the

transcript has not been delivered to Alice in a usable form. To get the

transcript, Alice needs to request it.

ALICE> request claim Transcript

Found claim Transcript in link Faber College

Getting Keys for the Schema from Sovrin

Requesting claim Transcript from Faber College...

Signature accepted.

Response from Faber College (65.17 ms):

 Received claim "Transcript".

Now the transcript has been issued; Alice has it in her possession, in

much the same way that she would hold a physical transcript that had

been mailed to her. When she inspects it again, she sees more details:

ALICE> show claim Transcript

Found claim Transcript in link Faber College

Status: 2016-10-18 14:44:53.368163

Name: Transcript

Version: 1.2

Attributes:

 ssn: 123-45-6789

 student_name: Alice Garcia

 year: 2015

 status: graduated

 degree: Bachelor of Science, Marketing

Apply for a Job

Alice would like to work for Acme Corp. Normally she would browse to

acmecorp.com, where she would click on a hyperlink to apply for a job.

Her browser would download a link invitation which her Sovrin app

would open; this would trigger a prompt to Alice, asking her to accept

the link with Acme Corp. Because weʼre using a CLI, the interface is

different, but the steps are the same. We do approximately the same

things that we did when Alice was accepting Faber Collegeʼs link

invitation:

ALICE> show sample/acme-job-application.sovrin

{

 "link-invitation": {

 "name": "Acme Corp",

 "identifier": "7YD5NKn3P4wVJLesAmA1rr7sLPqW9mR1nhFdKD518k21",

 "nonce": "57fbf9dc8c8e6acde33de98c6d747b28c",

 "endpoint": "54.70.102.199:6666"

 },

 "proof-requests": [{

 "name": "Job-Application",

 "version": "0.2",

 "attributes": {

 "first_name": "string",

 "last_name": "string",

 "phone_number": "string",

 "degree": "string",

 "status": "string",

 "ssn": "string"

 },

 "verifiableAttributes": ["degree", "status", "ssn"]

 }],

 "sig":

"oeGeMdt5HRjRsbaXybGpRmkkijhHrGT82syxofEJQbkjTCLW63tM3jMn1boaf62vCSEEDyTaVJZnrpfDXAHtLZ9"

}

Try Next:

 load sample/acme-job-application.sovrin

Notice that this link invitation contains a proof request. ACME Corp is

requesting that Alice provide a Job Application. The Job Application is

a rich document type that has a schema defined on the Sovrin ledger;

its particulars are outside the scope of this guide, but it will require a

name, SSN, and degree, so it overlaps with the transcript weʼve already

looked at. This becomes important below.

Notice that the invitation also identifies an endpoint. This is different

from our previous case, where an identity ownerʼs endpoint was

discovered through lookup on the Sovrin ledger. Here, Acme Corp.has

decided to short - circuit Sovrin and just directly publish its job

application acceptor endpoint with each request. Sovrin supports this.

Alice quickly works through the sequence of commands that

establishes a new pairwise connection with Acme: ``` ALICE> load

sample/acme-job-application.sovrin 1 link invitation found for Acme

Corp. Creating Link for Acme Corp.

Try Next: show link “Acme Corp” accept invitation from “Acme Corp”

ALICE> show link Acme Expanding Acme to “Acme Corp” Link (not yet

accepted) Name: Acme Corp Identifier: not yet assigned Trust anchor:

Acme Corp (not yet written to Sovrin) Verification key: Signing key:

Target: 7YD5NKn3P4wVJLesAmA1rr7sLPqW9mR1nhFdKD518k21

Target Verification key: <unknown, waiting for sync> Target endpoint:

54.70.102.199r6666 Invitation nonce:

57fbf9dc8c8e6acde33de98c6d747b28c Invitation status: not verified,

target verkey unknown Proof Request(s): Job-Application Last synced:

Try Next: sync “Acme Corp” accept invitation from “Acme Corp”

ALICE> accept invitation from Acme

Expanding Acme to “Acme Corp” Invitation not yet verified. Link not yet

synchronized. Attempting to sync…

Synchronizing… Link Acme Corp synced

Pinging target endpoint: (‘54.70.102.199,̓ 6666) Ping sent. Pong

received.

Signature accepted.

Response from Acme Corp (841.46 ms): Trust established. Identifier

created in Sovrin.

Synchronizing… Confirmed identifier written to Sovrin.

Try Next: show proof request “Job-Application” send proof “Job-

Application” to “Acme Corp” ```

Notice what the proof request looks like now. Although the application

is not submitted, it has various claims filled in:

ALICE> show proof request Job-Application

Found proof request "Job-Application" in link "Acme Corp"

Status: Requested

Name: Job-Application

Version: 0.2

Attributes:

 first_name: string

 last_name: string

 phone_number: string

 degree: Bachelor of Science, Marketing

 status: graduated

 ssn: 123-45-6789

Verifiable Attributes:

 degree

 status

 ssn

The Proof is constructed from the following claims:

 Claim (Transcript v1.2 from Faber College)

 ssn: 123-45-6789 (verifiable)

 status: graduated (verifiable)

 year: 2015 (verifiable)

 student_name: Alice Garcia (verifiable)

 degree: Bachelor of Science, Marketing (verifiable)

Try Next:

 set <attr-name> to <attr-value>

 send proof "Job-Application" to "Acme Corp"

Alice only has one claim that meets proof requirements for this Job

Application, so it is associated automatically with the request; this is

how some of her attributes are pre-populated.

The pre - population doesnʼt create data leakage, though; the request

is still pending. Alice can edit what she is willing to supply for each

requested attribute.

Notice that some attributes are verifiable, and some are not. The proof

request schema says that ssn and degree(and others) in the transcript

must be formally asserted by an issuer other than Alice. Notice also

that the first occurrence of first_name and last_name, plus the only

occurrence of phone_number, are empty, and are not required to be

verifiable. By not tagging these claims with a verifiable status, Acmeʼs

claim request is saying it will accept Aliceʼs own claim about her names

and phone numbers. (This might be done to allow Alice to provide a

first name thatʼs a nickname, for example.) Alice therefore adds the

extra attributes now:

ALICE> set first_name to Alice

ALICE> set last_name to Garcia

ALICE> set phone_number to 123-45-6789

Alice checks to see what the proof request looks like now.

ALICE> show proof request Job-Application

Found proof request "Job-Application" in link "Acme Corp"

Status: Requested

Name: Job-Application

Version: 0.2

Attributes:

 first_name: Alice

 last_name: Garcia

 phone_number: 123-45-6789

 degree: Bachelor of Science, Marketing

 status: graduated

 ssn: 123-45-6789

Verifiable Attributes:

 degree

 status

 ssn

The Proof is constructed from the following claims:

 Claim (Transcript v1.2 from Faber College)

 ssn: 123-45-6789 (verifiable)

 status: graduated (verifiable)

 year: 2015 (verifiable)

 student_name: Alice Garcia (verifiable)

 degree: Bachelor of Science, Marketing (verifiable)

Try Next:

 set <attr-name> to <attr-value>

 send proof "Job-Application" to "Acme Corp"

She decides to submit.

ALICE> send proof Job-Application to Acme

Signature accepted.

Response from Acme Corp (451.9 ms):

 Your claim Job-Application 0.2 has been received and is

verified

Response from Acme Corp (311.2 ms):

 Available Claim(s): Job-Certificate

It will be interesting to see whether Acme accepts this application with

the informal first_name not matching the one on her transcript. If Acme

is concerned about this discrepancy, it could reach out to Alice and ask

about it, using the secure channel thatʼs now established. Alice could

send a photo showing her college ID that lists her name as “Alice (Sally)

Gonzales”.

Here, weʼll assume the application is accepted, and Alice ends up

getting the job. When Alice inspects her link with Acme a week later,

she sees that a new claim is available:

ALICE> show link Acme

Expanding Acme to "Acme Corp"

Link

 Name: Acme Corp

 Identifier: cid-

2:EigjZrDwLREcX2T7P5zNZwZ6R7wv3GcdaKxAeN7cbqYX

 Trust anchor: Acme Corp (confirmed)

 Verification key: <same as local identifier>

 Signing key: <hidden>

 Target: 7YD5NKn3P4wVJLesAmA1rr7sLPqW9mR1nhFdKD518k21

 Target Verification key: <same as target>

 Target endpoint: 54.70.102.199:6666

 Invitation nonce: 57fbf9dc8c8e6acde33de98c6d747b28c

 Invitation status: Accepted

 Proof Request(s): Job-Application

 Available Claim(s): Job-Certificate

 Last synced: a minute ago

Try Next:

 show claim "Job-Certificate"

 request claim "Job-Certificate"

 show proof request "Job-Application"

 send proof "Job-Application" to "Acme Corp"

Apply for a Loan
Now that Alice has a job, sheʼd like to apply for a loan. That will require

proof of employment. She can get this from the Job-Certificate claim

offered by Acme. Alice goes through a familiar sequence of

interactions. First she inspects the claim:

ALICE> show claim Job-Certificate

Found claim Job-Certificate in link Acme Corp.

Status: available(not yet issued)

Name: Job-Certificate

Version: 0.2

Attributes:

 first_name

 last_name

 employement_status

 experience

 salary_bracket

Try Next:

 request claim "Job-Certificate"

Next, she requests it:

ALICE> request claim Job-Certificate

Found claim Job-Certificate in link Acme Corp

Getting Keys for the Schema from Sovrin

Requesting claim Job-Certificate from Acme Corp...

Signature accepted.

Response from Acme Corp (55.17 ms):

 Received claim "Job-Certificate".

The Job-Certificate has been issued, and she now has it in her

possession.

ALICE> show claim Job-Certificate

Found claim Job-Certificate in link Acme Corp.

Status: issued 2016-08-15

Name: Job-Certificate

Version: 0.1

Attributes:

 first_name: Alice

 last_name: Garcia

 employement_status: Permanent

 experience: 3 years

 salary_bracket: between $50,000 to $100,000

She can use it when she applies for her loan, in much the same way

that she used her transcript when applying for a job.

There is a disadvantage in this approach to data sharing, though–it may

disclose more data than what is strictly necessary. If all Alice needs to

do is provide proof of employment, this can be done with an

anonymous credential instead. Anonymous credentials may prove

certain predicates without disclosing actual values (e.g., Alice is

employed full-time, with a salary greater than X–but how much her

salary is, and what her hire date is, remain hidden).

Support for anonymous credentials is at a late alpha stage on Sovrin

right now. Weʼll circle back and update this guide when we reach beta.

Alice now loads Thrift Bankʼs loan application link: ``` ALICE@test>

load sample/thrift-loan-application.sovrin 1 link invitation found for

Thrift Bank. Creating Link for Thrift Bank.

Try Next: show link “Thrift Bank” accept invitation from “Thrift Bank”

```

Alice accepts the loan application link:



ALICE@test> accept invitation from thrift

Expanding thrift to "Thrift Bank"

Invitation not yet verified.

Link not yet synchronized.

Attempting to sync...

Synchronizing...

    Link Thrift Bank synced

Pinging target endpoint: ('54.70.102.199', 7777)

    Ping sent.

    Pong received.

Signature accepted.

Response from Thrift Bank (842.49 ms):

    Trust established.

    Identifier created in Sovrin.

Synchronizing...

    Confirmed identifier written to Sovrin.

Try Next:

    show proof request "Loan-Application-Basic"

    send proof "Loan-Application-Basic" to "Thrift Bank"

    show proof request "Loan-Application-KYC"

    send proof "Loan-Application-KYC" to "Thrift Bank"

Alice checks to see what the proof request “Loan-Application-Basic”

looks like: ``` ALICE@test> show proof request Loan-Application-



Basic Found proof request “Loan-Application-Basic” in link “Thrift

Bank” Status: Requested Name: Loan-Application-Basic Version: 0.1

Attributes: salary_bracket: between $50,000 to $100,000

employee_status: Permanent Verifiable Attributes: salary_bracket

employee_status

The Proof is constructed from the following claims:

Claim (Job-Certificate v0.2 from Acme Corp)

    last_name: Garcia (verifiable)

    salary_bracket: between $50,000 to $100,000 (verifiable)

    employee_status: Permanent (verifiable)

    experience: 3 years (verifiable)

    first_name: Alice (verifiable)

Try Next: set to send proof Loan-Application-Basic to Thrift Bank ```

Alice sends just the “Loan-Application-Basic” proof to the bank. This

allows her to minimize the PII that she has to share when all sheʼs

trying to do right now is prove basic eligibility.



ALICE@test> send proof Loan-Application-Basic to Thrift Bank

Signature accepted.

Response from Thrift Bank (479.17 ms):

    Your Proof Loan-Application-Basic 0.1 has been received and 

verified

    Loan eligibility criteria satisfied, please send another 

proof 'Loan-Application-KYC'

Alice now checks the second proof request where she needs to share

her personal information with bank.

ALICE@test> show proof request Loan-Application-KYC

Found proof request "Loan-Application-KYC" in link "Thrift Bank"

Status: Requested

Name: Loan-Application-KYC

Version: 0.1

Attributes:

    first_name: Alice

    last_name: Garcia

    ssn: 123-45-6789

Verifiable Attributes:

    first_name

    last_name

    ssn

The Proof is constructed from the following claims:



    Claim (Transcript v1.2 from Faber College)

        degree: Bachelor of Science, Marketing (verifiable)

        student_name: Alice Garcia (verifiable)

        year: 2015 (verifiable)

        ssn: 123-45-6789 (verifiable)

        status: graduated (verifiable)

    Claim (Job-Certificate v0.2 from Acme Corp)

        last_name: Garcia (verifiable)

        salary_bracket: between $50,000 to $100,000 (verifiable)

        employee_status: Permanent (verifiable)

        experience: 3 years (verifiable)

        first_name: Alice (verifiable)

Try Next:

    set <attr-name> to <attr-value>

    send proof Loan-Application-KYC to Thrift Bank

Alice now sends “Loan-Application-KYC” proof to the bank: ```

ALICE@test> send proof Loan-Application-KYC to Thrift Bank

Signature accepted.

Response from Thrift Bank (69.9 ms): Your Proof Loan-Application-KYC

0.1 has been received and verified ```

Appendix



Faber College Configures
Transcripts
The following operations show how Transcripts are defined on the

ledger, such that they can later be issued with reference to a known

schema. ``` faber> use Schema-Keyring

faber> new schema name = “Transcript” version = “1.2” attributes = {

“student_name”: “string”, “ssn”: “int”, “degree”: “string”, “year”: “int”,

“status”: “string” }

Schema Transcript v1 .2 added to Schema-Keyring

faber> add keys of type CL for schema Transcript version 1.2 Keys

added

faber> show pending 2 pending … … faber> submit pending Submitting

2 transactions… …. …. Submitted. ```

Acme Corp Defines a Job-
Application
A similar process is followed by Acme Corp. to define a Job

Application.

$ sovrin



sovrin> prompt

acme

acme> new schema

name = "Job-Application"

version = "0.1"

attributes = {

    "first_name": "string",

    "last_name": "string",

    "phone_number": "int",

    "proofs": [{

        "name": "Transcript",

        "version": 1.2,

        "attributes": {

            "first_name": "string",

            "last_name": "string",

            "ssn": "string",

            "degree": "string",

            "status": "string"

        }

    }]

}

Schema Job-Application v0 .1 added

 

acme> show pending 1 pending

...

acme> submit pending Submitting 2 transactions...

....

....

Submitted.


